### Lessons Learned from the Everglades Collaborative Adaptive Management Program

















# **Interagency CERP AM**

- Andrew LoSchiavo, USACE
- Ronnie Best, USGS, retired
- Rebecca Burns, Atkins Global
- Susan Gray, SFWMD
- Matthew Harwell, USEPA
- Eliza Hines, USFWS
- Agnes McLean, ENP
- Tom St. Clair, RESPEC
- Steve Traxler, USFWS

**USGS** 

• Jim Vearil, USACE, retired

**Disclaimer** The opinions expressed in this presentation are those of the author. They do not reflect Agency policy, endorsement, or action.

# **Others Working on CERP AM**

- John Ogden
- Stu Appelbaum Laura Brandt
- Elmar Kurzbach Jim Boone
- Fred Sklar
- Jennifer Pratt- Paul DuBowy Miles
- Barbara Stinson
   Steve Gilbert
- Kent Loftin
- Bill Schaefer
- Zafar Hyder
- Chuck Padera



#### <mark>≝USGS</mark>

- Carol Mitchell

  - Nick Aumen

  - Vic Engel
  - David Hallac
  - Ernie Marks
  - Lorraine Heisler
  - **Betty Grizzle**



- **Greg Graves**
- Patti Gorman
- Larry Gerry
- Laura Mahoney •
- Russ Reed
- **Darlene Guinto** •
- Steve Light
- Cheryl • **Buckingham** 
  - Sarah Bellmund
- Lisa Sterling







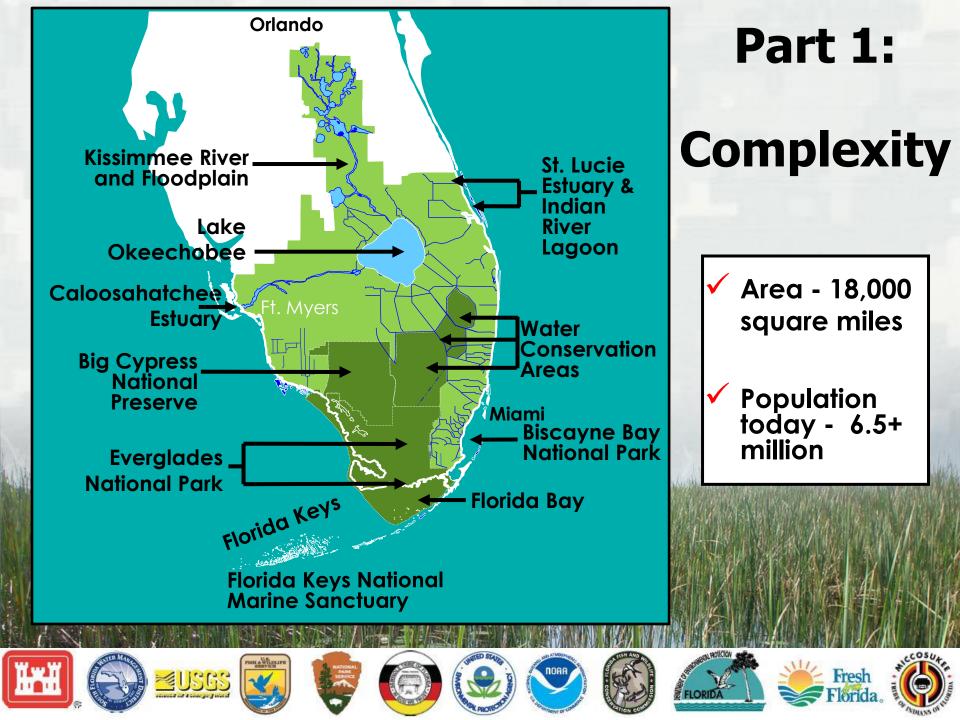
## Overview

- Part 1: Complexity
- Part 2: Adaptive Management Framework
- Part 3: Top 5 Adaptive Management Lessons




















## **A Complex Ecosystem**

- Too much or too little water for the South Florida ecosystem
- 50 percent reduction in spatial extent of natural system
- Declining estuary health
- Massive reductions in wading bird populations
- Degradation of water quality
- Loss of native habitat to invasive exotic vegetation
- 68 federally-listed threatened and endangered species
- Repetitive water shortages and salt water intrusion

















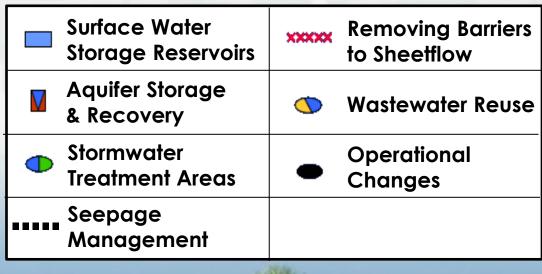
- Provide vital public engineering services in peace and war to strengthen our Nation's security, energize the economy, and reduce risks from disasters.
- Manage and protect water resources of the region by balancing and improving water quality, flood control, natural systems and water supply.
- Work with others to conserve, protect, and enhance fish, wildlife, plants, and their habitats for the continuing benefit of the American people.



- Protecting Florida's environment and natural resources to serve the current and future needs of the state and its visitors. Common sense management and conservation decisions are guided toward more protection and less process.
- Provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.



- Preserves unimpaired the natural and cultural resources and values of the national park system for the enjoyment, education, and inspiration of this and future generations. Cooperates with partners to extend the benefits of natural and cultural resource conservation and outdoor recreation throughout this country and the world.
- Protect and evaluate the Tribe's land and water resources and to facilitate the wise use and conservation of these resources.




- Protect human health and the environment.
- Managing fish and wildlife resources for their longterm well-being and the benefit of people.
- Conserving and protecting the state's agricultural and natural resources by reducing wildfires, promoting environmentally safe agricultural practices, and managing public lands.

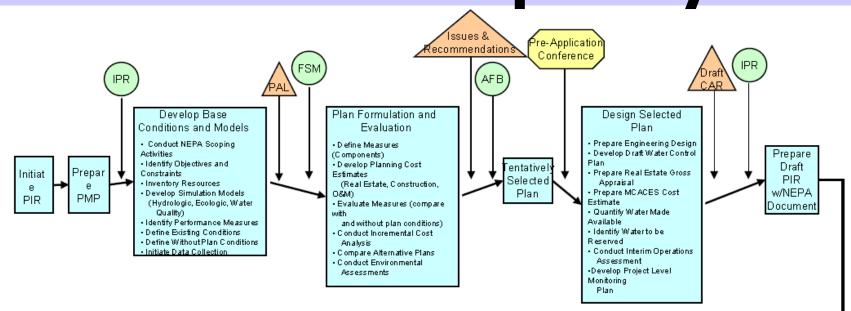


## **Restoration Plan Complexity**

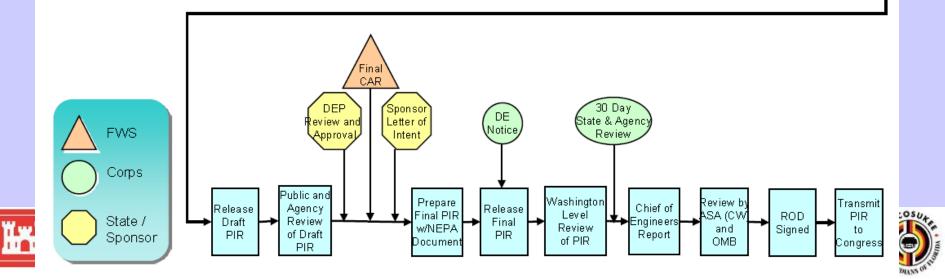
68 components implemented over 35 years:



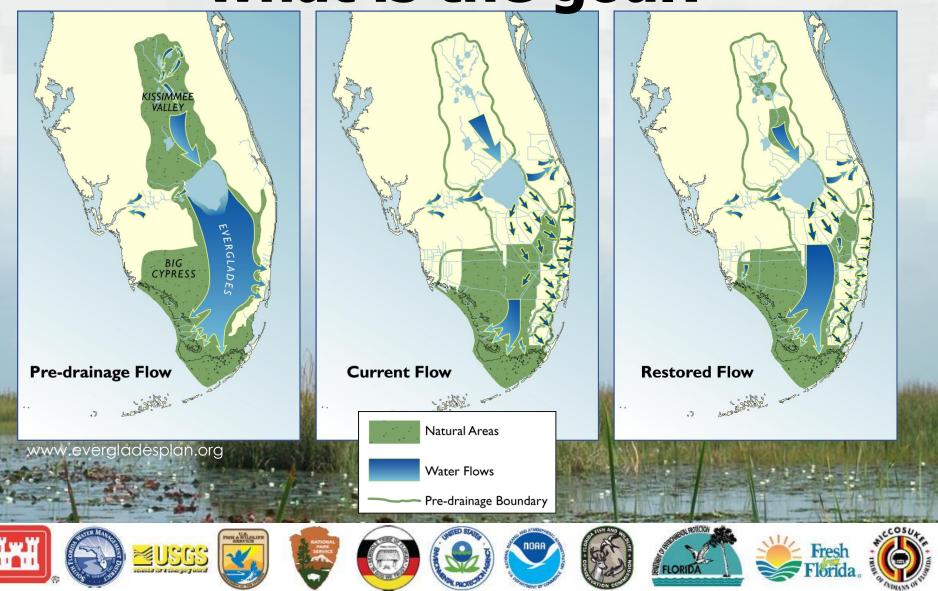





#### **Incremental Implementation**


|                                                                   | Total Project Cost     |     |                      |                                          |                | 100       |                         |      |      |      |      |       |      | _    |
|-------------------------------------------------------------------|------------------------|-----|----------------------|------------------------------------------|----------------|-----------|-------------------------|------|------|------|------|-------|------|------|
| Project                                                           | (\$M)                  | Н   | 2010                 | 2011                                     | 2012           | 2013      | 2014                    | 2015 | П    | 2016 | 2017 | 2018  | 2019 | 2020 |
| 1 Seminole Big Cypress                                            | \$60                   |     |                      |                                          | -              |           |                         |      | 1 F  |      |      |       |      |      |
| 2 West Palm Beach Canal/STA-1E                                    | \$318                  |     |                      |                                          |                |           |                         |      | 1 F  |      |      |       |      |      |
| 3 C-111 Spreader Canal                                            | \$154                  |     |                      |                                          |                |           |                         |      | 1 F  |      |      |       |      |      |
| Design Test                                                       | \$2                    |     |                      | •                                        |                |           |                         |      | 1    |      |      |       |      |      |
| Western Project                                                   | \$150                  |     |                      |                                          | -0             |           |                         |      | 1 [  |      |      |       |      |      |
| 4 L-31N Seepage Management Pilot Project                          | \$16                   |     |                      |                                          | TO BE          | DETE      | RMIN                    | D    | 1    |      |      |       |      |      |
| 5 C-111 South Dade                                                | \$391                  |     |                      |                                          |                |           | -                       |      | 1    |      | -    |       |      |      |
| 6 Kissimmee River Restoration                                     | \$636                  |     |                      |                                          |                |           | -                       |      | 1 Г  |      |      |       |      |      |
| 7 Modified Water Deliveries to Everglades National Park           | \$414                  |     |                      |                                          |                |           | 1                       |      | 1 [  |      |      |       |      |      |
| Tamiami Trail Modifications                                       | \$113                  |     |                      |                                          |                | -         |                         |      | 1 Г  |      |      |       |      |      |
| Conveyance and Seepage Control Features                           | \$51                   |     |                      | 10.00.00.0                               | -              | -         |                         |      | 1 [  | _    |      |       |      |      |
| 8 Picayune Strand Restoration                                     | \$448                  |     | 20 06 000 a          | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 10 M M M       |           | 1 - 25 - 75 - 1939<br>1 |      | 1 C  |      |      |       |      |      |
| Merritt Pump Station                                              | \$65                   |     |                      |                                          | -•             |           |                         |      | ] [  |      |      |       |      |      |
| Faka Union Pump Station                                           | \$100                  |     | •                    |                                          |                |           |                         |      | 1 [  |      |      |       |      |      |
| Flood Protection Features                                         | \$30                   |     |                      |                                          | -              | -         |                         |      | I L  |      |      |       |      |      |
| Miller Pump Station                                               | \$75                   |     |                      |                                          |                | •         |                         |      |      | -•   |      |       |      |      |
| 9 Lakeside Ranch STA Phase 1                                      | \$105                  |     |                      |                                          |                |           |                         |      | 10   |      |      |       |      |      |
| 10 Site 1 Impoundment                                             | \$109                  |     |                      |                                          |                |           |                         |      | inu  |      |      |       |      |      |
| Phase 1                                                           |                        |     | •                    | _                                        | •              |           |                         |      | lai  | 1    | ()   |       |      |      |
| Phase 2                                                           |                        |     | 201.06.0020.0        | •                                        |                |           | -                       |      | D B  |      |      |       |      |      |
| 11 Indian River Lagoon-South                                      | \$1,882                |     |                      |                                          |                |           |                         |      | il.  |      |      |       |      |      |
| C-44 Intake Canal                                                 | \$45                   |     |                      | •                                        | i se se se     | -•        |                         |      | ra   |      |      |       |      |      |
| C-44 Reservoir                                                    | \$205                  |     |                      |                                          |                | -         | 25 10 1001              |      | 31   | -    |      |       |      |      |
| C-44 STA                                                          | \$115                  |     |                      |                                          |                |           |                         | •    | 0    |      |      | ſ     |      |      |
| 12 Biscayne Bay Coastal Wetlands                                  | \$595                  |     | 20.06.000            | A 4 A 4                                  |                |           | 1 AN AL 1999            |      | en   |      |      |       |      |      |
| Phase 1                                                           | \$162                  |     |                      | -                                        |                |           | •                       |      | V:st | -    |      |       |      |      |
| 13 Water Conservation Area 3 Decompartmentalization and Sheetflow | \$390                  |     |                      |                                          |                |           |                         |      | S    |      |      |       |      |      |
| Enhancement (Decomp)                                              |                        |     | 0.0.00               | -                                        |                |           |                         |      |      |      |      |       |      |      |
| Decomp Physical Model                                             | \$10                   |     |                      | •                                        |                | -•        |                         |      | 1 C  |      |      |       |      |      |
| Decomp Part 1                                                     | \$196                  |     | - 60 - 63 - 63 G - 1 |                                          |                |           |                         |      |      | •    |      |       | f    |      |
| Decomp Part 2                                                     | \$133                  |     |                      |                                          |                |           |                         |      | 1 C  |      |      |       |      |      |
| Decomp Part 3                                                     | \$52                   |     |                      |                                          |                |           |                         |      | 1 C  |      |      |       |      |      |
| 14 Caloosahatchee River (C-43)                                    | \$977                  |     |                      |                                          |                |           |                         |      |      |      |      |       |      |      |
| West Basin Storage Reservoir                                      | \$595                  |     |                      |                                          | TO BE          | E DET     | ERMIN                   | ED   | 1 [  |      |      |       |      |      |
| 15 Melaleuca Eradication and Other Exotic Plants                  | \$17                   |     |                      | -                                        | -•             |           |                         |      | 1 [  |      |      |       |      |      |
| 16 Broward County Water Preserve Areas                            | \$901                  |     |                      | ~ ~ ~ ~                                  |                |           |                         |      | ΙΓ   |      |      |       |      |      |
| C-11 Impoundment                                                  |                        |     |                      |                                          |                |           |                         | •    |      |      |      | ſ     |      |      |
| WCA 3A&3B Levee/S-356                                             |                        |     |                      |                                          |                |           |                         |      | 1 F  |      |      |       | 1    |      |
| C-9 Impoundment                                                   |                        |     |                      |                                          |                |           |                         |      | 1 [  |      |      |       |      |      |
| 17 North Palm Beach County Part 1                                 | \$287                  |     |                      |                                          |                |           |                         |      | 1 Г  |      |      |       |      |      |
| 18 ENP Seepage Management                                         | \$532                  |     | 201116-00201-0       |                                          | a de século de | 10 00 0 V |                         |      | 1 [  |      | 1    |       | •    |      |
| 19 Lake Okeechobee Watershed                                      | \$1,561                |     |                      |                                          |                |           |                         |      | 1 [  | 1    |      |       | •    |      |
| 20 Herbert Hoover Dike Rehabilitation                             | \$991                  |     |                      |                                          |                |           |                         |      | ┝    |      |      |       |      |      |
| 21 Long-Term Plan for Achieving Water Quality Goals               | 64 500                 |     |                      |                                          |                |           |                         |      | ΙΓ   |      |      |       |      |      |
| in the Everglades Protection Area Projects (100% State)           | \$1,500                |     |                      |                                          |                | 1         | İ                       | Ì    |      | -    |      |       |      | 1    |
| 22 Central Everglades Storage Project                             | TBD                    |     |                      |                                          | TO BE          | DET       | ERMIN                   | ED   | 1    |      |      |       |      |      |
| Projects are currently federal construction.                      |                        |     |                      |                                          |                |           |                         |      |      |      |      |       |      |      |
| Projects are currently non-federal construction, subject to chan  | de based on further au | the | orizatio             | n and                                    | fundi          | na.       |                         |      |      |      |      |       |      |      |
| <ul> <li>Construction has started on these projects.</li> </ul>   | go subbu on further au |     | Jizario              | nana                                     | Turiui         | ug.       |                         |      |      |      | Octo | her ? | 010  |      |
| Construction has statted on these projects.                       |                        |     |                      |                                          |                |           |                         |      |      | 8    | 0.10 |       | 010  |      |

ADIANS OF


#### **Process Complexity**



This PIR Process is very time consuming, expensive and has to be approved by Congress.

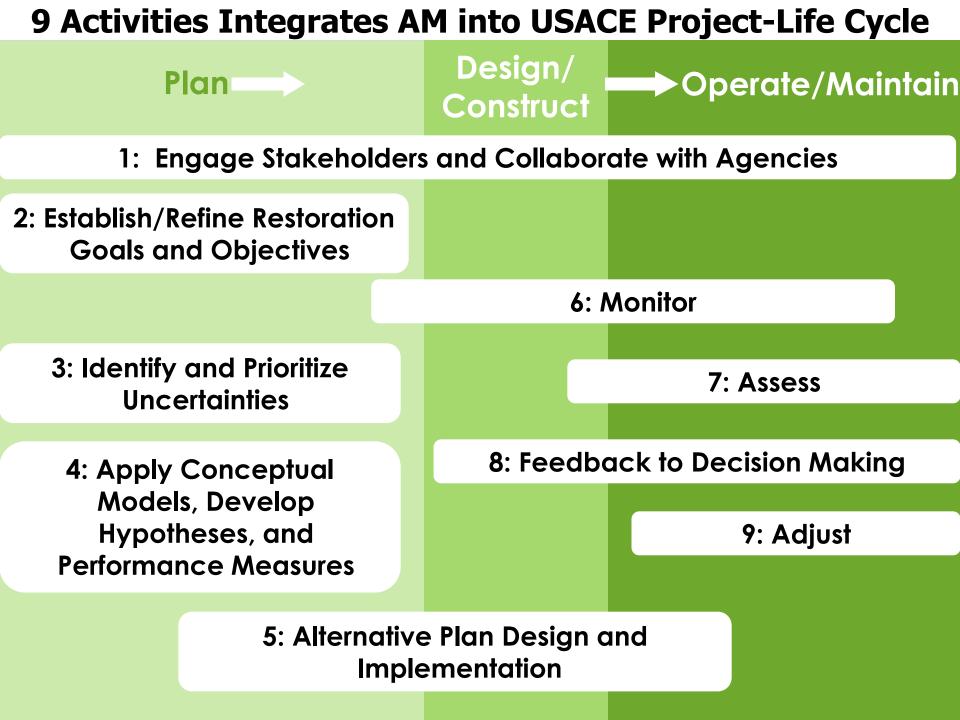


#### Given all this complexity, what is the goal?



#### Part 2: AM Framework

- New knowledge (learning) to improve current/future projects and program implementation, and operations
- Builds shared understanding and stakeholder support
- Reduce risk of not meeting ecosystem restoration goals
- Formalizes activities done in good planning and project management to address uncertainty














# Part 3: Top 5 AM Lessons

- 1. Establishing an Adaptive Management Authority
- 2. Integrating Adaptive Management into an Institutional Framework
- 3. Developing an Applied Science Framework
- 4. Characterizing Uncertainty and Developing Management Option Matrices
- 5. Establishing Robust Peer-Review Mechanisms

















## Lesson 1: Establish an Adaptive Management Authority

- Legislative and regulatory authority
  - Anchors commitment of agencies responsible
  - Develop, fund, and implement AM programs
- Change happens
  - Without this commitment, development and implementation of AM disrupted



### Foundational Elements of Everglades AM Program

- 1992-1999 Science Foundation for CERP Adaptive Management
- 2000 WRDA Authorized CERP and Adaptive Assessment and Monitoring
- 2003 CERP Programmatic Regulations required development of AM Program



### USACE Law, Policies & Technical Guidance

- WRDA 2007 (Missouri River, Louisiana Coastal Area, Upper Mississippi)
   2009 HQ Guidance on WRDA 2007
  - Section 2039 (Ecosystem Restoration Projects)
  - Section 2036 (Wetland Mitigation Plans)
- 2012 ERDC The Application of Adaptive Management to Ecosystem Restoration Projects









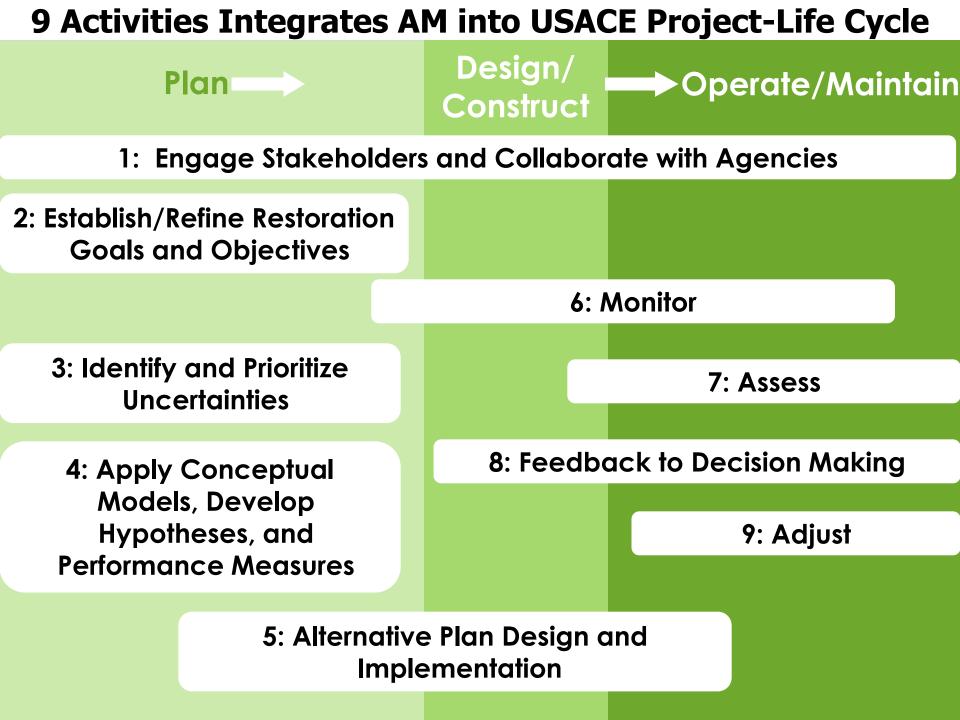











### **Other Technical Guidance**

- National Research Council—
  - 2004 Adaptive Management for Water Resources Project Planning
  - Ecosystem-specific AM reviews
- 2009, 2012 Department of Interior AM Guides
- 2012 Council on Environmental Quality Adaptive Management Benchmarks for Climate Change

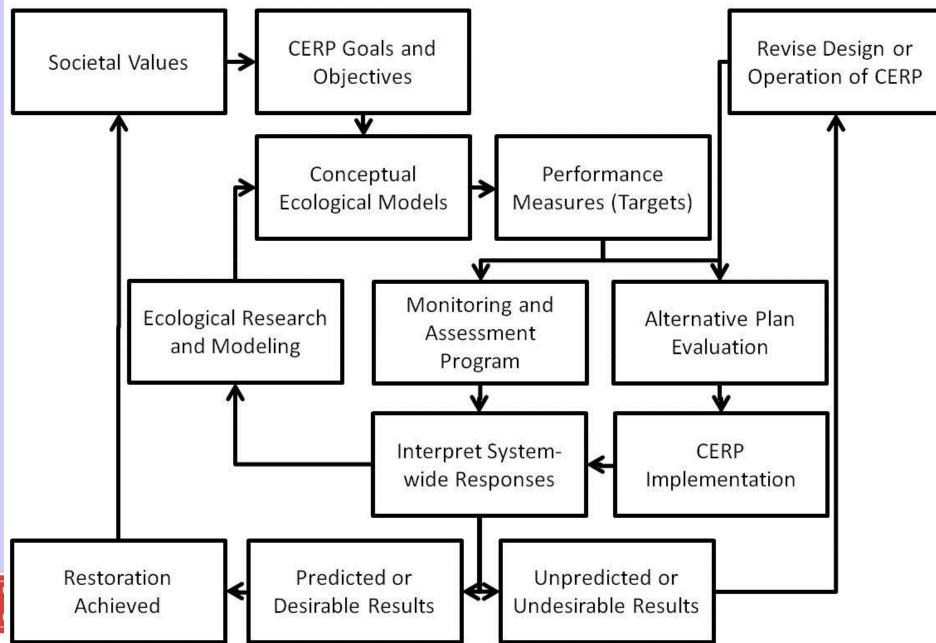
# Lesson 2: Integrating AM into Institutional Authority

- Leverage existing institutional processes
  - Integration of adaptive management activities
  - Develop technical guidance (project and program)
- Ensure adaptive management activities are understood by various participants.
  - Roles and responsibilities are clearly articulated
  - Budgeting and scheduling of AM activities





#### **Project – Level AM Plans**


| Project                                | Life-Cycle<br>Phase                                | AM<br>Plan? | Adaptive<br>Management<br>Features                                   |
|----------------------------------------|----------------------------------------------------|-------------|----------------------------------------------------------------------|
| Aquifer Storage<br>Recovery            | Pilot Project<br>Implemented                       | No*         | Testing Pilot Projects and Sensitivity<br>Modeling                   |
| Decomp of Water<br>Conservation Area 3 | Pilot Project,<br>Planning ,<br>Construction       | Yes         | Decomp Physical Model and PIR 1 AM<br>Plan; Field Test               |
| C-111 Spreader<br>Canal                | Pilot Project and<br>Chief's Report,<br>Operations | No*         | Design Test and Operational Tests;<br>Project Phasing                |
| Biscayne Bay Coastal<br>Wetlands       | Chief's Report                                     | Yes         | Post Construction<br>Contingency Options (MOM);<br>Linked Monitoring |
| Indian River Lagoon S                  | Construction                                       | No          | Project Sequencing Adjustments                                       |
| Broward County<br>Water Preserve Areas | Chief's Report,<br>Design                          | Yes         | Operational Options<br>and Design Improvements;<br>Linked Monitoring |
| Melaleuca                              | Implementation                                     | No*         | AM Implementation Strategy;<br>Some Monitoring                       |
| Picayune Strand                        | Construction                                       | No          | Monitoring and Assessment Plan with<br>Recommendations to use AM     |

# Lesson 3: Developing an Applied Science Framework

- Organize scientific understanding of ecosystems
  - E.G., conceptual ecological models identify the ecological elements that best indicate the health of the system
  - Performance measures and restoration targets
- Foundation for a comprehensive monitoring program and adaptive assessment strategy
  - Links ecological indicators with management actions



## **Applied Science Framework**



### Lesson 4: Characterizing Uncertainty and Developing Management Option Matrices



#### Lesson 4

- Early identification of uncertainties
  - Informs initial restoration planning to prevent delays in project schedules
  - Identifies potential risks to meeting restoration goals
- As a result, hypothesis-driven strategies
  - Provide information for project planning, design, construction, and operations
  - Development of tools such as management options matrices (MOMs)
  - Link specific monitoring to options for adjustments if performance goals are not achieved

















### **Management Option Matrix**

| Stressor<br>Metric                                              | Target                                                                                      | Management<br>OPTION 1                                                                           | Management<br>OPTION 2                                                                                         | Program<br>Management<br>OPTION 3                            |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Seepage<br>Control                                              | Maintain stages<br>in Taylor Slough                                                         | Increase Frog Pond<br>Stages                                                                     | Increase Aerojet<br>Canal Stages                                                                               | System-<br>wide/Regional issue<br>(need additional<br>water) |
| Salinity                                                        | Taylor River (0-<br>9ppt); L. Madeira<br>Bay (12-22 ppt)<br>Terrapin Bay (12-<br>26ppt)     | Increase C-111<br>Stages                                                                         | Adjust operations                                                                                              | System-<br>wide/Regional issue<br>(need additional<br>water) |
| Seagrass<br>Species and<br>Area (SAV<br>performance<br>measure) | Seagrass Species<br>and Area<br>Increase Ruppia<br>and Halodule<br>species<br>presence      | Adjust operations to<br>even salinity range<br>transition and<br>decrease salinities             | Adjust Water<br>Quality Source<br>Control Measures                                                             | Targeted Seagrass<br>Plantings                               |
| Wetland<br>macro<br>vegetation                                  | Narrow<br>mangrove fringe<br>along shoreline;<br>graminoid marsh<br>inland from<br>mangrove | Provide a more<br>natural fire regime<br>to promote and<br>maintain graminoid<br>marsh community | Physically remove<br>forested wetland<br>vegetation to<br>promote growth<br>and establishment<br>of graminoids | Fiorida.                                                     |

## Lesson 5: Establishing Robust Peer-Review Mechanisms

- Independent external peer review of AM program and key AM activities
  - Feedback for maintaining/improving science
  - Highlight possible solutions; advice other systems
- Builds credibility among stakeholders
- Range of Peer-Review used for CERP AM
  - National Academy of Science
  - Peer-reviewed journals
  - Independent technical review panels



## **Peer Review Types**

| Type of Peer  | Example                | Purpose                                         | References            |  |
|---------------|------------------------|-------------------------------------------------|-----------------------|--|
| Review        |                        |                                                 |                       |  |
| National      | Draft Monitoring and   | Is MAP heading in right direction; help         | NRC (2003)            |  |
| Academy of    | Assessment Plan        | refine original MAP and distill hundreds of     |                       |  |
| Science       | (MAP)                  | performance measures to manageable              |                       |  |
| (Congress     |                        | numbers                                         |                       |  |
| mandated)     | MAP II – Assessment    | Is the science assessment strategy effective at | NRC (2007)            |  |
|               | Strategy               | informing management decisions?                 |                       |  |
|               | CERP restoration       | What is the status of CERP implementation       | NRC (2007, 2008,      |  |
|               | progress overall       | and how effective is the science-management     | 2011, 2012)           |  |
|               |                        | interface?                                      |                       |  |
|               | Review of the overall  | Peer reviews of the CERP Adaptive               | NRC (2008,2010)       |  |
|               | CERP Adaptive          | Management program by the National              |                       |  |
|               | Management Program     | Academy of Science                              |                       |  |
| Type of Peer  | Example                | Purpose                                         | References            |  |
| Review        |                        |                                                 |                       |  |
| Traditional   | Conceptual Models      | Review of a suite of conceptual ecological      | Special Issue of      |  |
| Peer-Reviewed | across south Florida   | models used a framework for implementing        | Wetlands (Vol 25, No  |  |
| Journals      | ecosystems             | MAP monitoring and assessment.                  | 4,2005)               |  |
|               | Indicators for         | Review of a suite of system-wide ecological     | Special Issue         |  |
|               | Everglades Restoration | indicators for communicating to managers        | Ecological Indicators |  |
|               |                        |                                                 | (2009;9/6S)           |  |

















## **Peer Review Types**

|                        | I                     |                                                | · · · · · · · · · · · · · · · · · · · |
|------------------------|-----------------------|------------------------------------------------|---------------------------------------|
| Type of Peer<br>Review | Example               | Purpose                                        | References                            |
| Independent            | Avian Ecology         | Review information on four species of          | SEI(2007)                             |
| Technical              | Workshop              | concern and to provide scientific clarity that |                                       |
| <b>Review Panel</b>    | -                     | would allow managers to move forward with      |                                       |
|                        |                       | restoration in a multi-species framework.      |                                       |
|                        | Water Quality         | Independent technical review panel reviewed    | Mitsch et al. (2007)                  |
|                        | Modeling for          | landscape scale water quality model to draw    |                                       |
|                        | Restoration Planning  | inferences about appropriate use in            |                                       |
|                        |                       | restoration planning                           |                                       |
|                        | Hydrology performance | Review what is known about the ecological      | Bedford et al. (2012)                 |
|                        | measures for          | consequences of extreme depth events and       |                                       |
|                        | Restoration Planning  | recommend an approach to evaluating such       |                                       |
|                        |                       | effects for restoration planning               |                                       |
|                        | Capturing Modeling    | Development of uncertainty analysis            | Lall et al. (2002)                    |
|                        | Uncertainty in        | recommendations for landscape scale            |                                       |
|                        | Restoration Planning  | hydrological modeling for restoration          |                                       |
|                        |                       | planning                                       |                                       |
|                        | CERP Adaptive         | Adaptive management experts from other         | CERP Adaptive                         |
|                        | Management            | restoration programs independently reviewed    | Management Expert                     |
|                        | Integration Guide     | the CERP Adaptive Management Integration       | Panel report (2010)                   |
|                        |                       | Guide prior to finalization                    | • • • •                               |
| •                      | •                     |                                                |                                       |















## **Top 5 AM Lessons**

- 1. Establishing an Adaptive Management Authority
- 2. Integrating Adaptive Management into an Institutional Framework
- 3. Developing an Applied Science Framework
- 4. Characterizing Uncertainty and Developing Management Option Matrices
- 5. Establishing Robust Peer-Review Mechanisms



















# Look for Special Issue of *Ecology and Society* on AM

#### ? Questions ?















